Translate This Page

 Logistic map approach to Gibbs excess free energies of a mixture

Pier Francesco Sciuto
                                                                                                       DOWNLOAD PDF VERSION

WARNING - PRESENT PAPER WAS REGISTERED IN 2006 

Key words:
Logistic map, Verhulst, geochemistry, mistures

Abstract
Logistic maps can be a useful tool to describe Gibbs excess energy in multicomponent systems. The concept of population intended as a collection of individuals, the concept of density, the notion of meta population (population of populations) familiar to biologists who utilize logistic maps, is extensible to the thermodynamics of mineral phases. The interaction strength represents the balance of power between different species, the interaction evolution rate as a spontaneous process of self organization. This approach proves particularly simple and efficient for describing data sets of multi component excess energies. This paper looks at a formalism based on Verlhust's dynamic approach in order to gain an in-depth understanding of the behaviour of excess energies and mixtures. 

Keywords. Verlhust, logistic map, excess free energies, multicomponent mixtures

Introduction
Recent studies in thermodynamics regarding a new formulation of entropy (id. es. Tsallis, 1995, 1999) suggest considering complexity (chaos) as an indispensable part of behavior of the properties of natural systems.  The concept of chaos theory is frequently introduced when explaining and discussing the logistic equation. This equation has been successfully used in biology and ecology to describe various evolution scenarios. It was proposed in 1845 by Pierre Françoise Verhulst, a Belgian mathematician studying population development in a limited environment as an equation to describe biological population dynamics and growth distribution. It is commonly applied in probability theory and statistics and corresponds to the differential equation:

 (1)

where

 is the growth velocity of the population,  is the parameter of specific growth,  is the size of the population,  is the maximum number of elements in the population. It has the following solution

 (2)

Equation (1) was achieved to define an evolutive model of population after some considerations of the Malthusian theory (1798) that suggest an exponential grow of population. May (1976) renamed this equation logistic to emphasize the fact that the population is limited by the resources of the area where it is located. If  expression (1) become

 (3)
In the past the logistic equation was adopted to describe chemical kinetics (Latham, 1964) and autocatalytic processes (Northrop, Kemitz and Hemiot, 1948; Steven, 1965). 
The discrete version of the logistic equation (1) is known as the logistic map and its form is

 (4)

Figure 1 illustrates an initial iterations diagram of the typical representation of the bifurcation diagram that characterizes this equation. It is named Feigenbaum diagram, after the physician Mitchell Feigenbaum who studied the logistic map in depth. The values for  are typically plotted vertically against the horizontal steps of the parameterand in biology this diagram represents the biotic potential of the population model. The transient curve highlights the bifurcation phenomena, typical of dynamical systems.

Figure 1: Bifurcation diagram of logistic map; it is also named Feigenbaum diagram. The sequence A, B, C, all summarized in D illustrate the bifurcation of the plot phenomena, specific of dynamical systems. A, B, C correspond respectively to eq. 5, 6, 7 expressed as ; 

Eq. (4), indeed,  was used in biology to describe the dynamic regime of a natural population after  generations inside a limited territory.
Two terms characterize it:  or growth factor and saturation (feedback) expression which inhibits further growth of the population. The logistic map is also often used to introduce the chaos theory. The adjective map depends on the fact that, mathematically, a differential equation is termed flux if analysed in a continuum while it is termed map if used in a discrete setting. The map approach was introduced by Poincarè in 1908. This approach proves useful in biology to describe population evolution.  The first few iterations of the logistic map give:

 (5)

 (6)

 (7)

More generally if  is the degree of iteration of the expression , it represents the related logistic map. If extended as an equations set the logistic map becomes an effective tool for describing mutual influence of different populations (Odum, 1983).
The expression , sum of consecutive iteration degrees of logistic function, represents an adequate interpolation function for describing population trend, this analogously to a polynomial equation.

 


Figure 2: A, B and C, D and E illustrate, respectively, different positive (from 4 to 0) and negative (from 0 to -4) values, step 0.1, for the equations (5), (6), (7).


The non ideal contribution to the free energy of a mixture
The molar free energy of mixing of a binary regular solution is given by:

 (8)

where  is the ideal mixing and  is the excess contribution  respectively.

The non ideal contribution to the free energy, , is a symmetrical function of composition:

  (9)

where  is the A-B interchange energy of interaction parameter and  and  are respectively the mixture end-members, so:

 (10)

Thus

 (11)

Or otherwise

 (12)

where  
Hildebrand (1929) introduced the term regular solution for some types of solution which follow equation (10) and in which the interact parameter  is independent from P and T.
Guggenheim (1937) more generally suggested that the molar excess Gibbs energy of a binary solution may be represented by the polynomial expression:

 (13)

When the A constants with odd subscripts, A1, A3 etc are zero the  becomes symmetrical with respect to composition, and are, thus, called symmetric solutions by Guggenheim (1967). The simplest functional form of no ideal solution is the one in which all but the first constant in equation (13) is zero. In this case  is the equation (9). Guggenheim (1967) called this type of solution a simple mixture. So for excess free energy of mixing, the term regular solution and simple mixture coincide.
Treatments beyond three or four components are generally rare despite the presence of many minor compounds in phases of geologic interest. This is essentially because of problems connected with computational aspects ( id. es.  Whol 1946, 1953; Kohler 1960; Hillert, 1980) but the effort of each model was condensed on the possibility to describe rather than to understand the intrinsic properties of excess energies, so parameter numbers utilized pose a greater problem. 


Verhulst's approach to excess energy of a mixture
As above illustrated, in biology logistic maps describe the evolution of a population in a limited area. This formulation is conceptually analogous to description of excess Gibbs energy in a mixture. In the same way eq. (11) and eq.(5) suggest interpreting the two-component excess free energy of a mixture as a coupled logistic model (in a binary case as the dynamics of two isolated metaphorical symbiotic species). Mathematically, logistic map equations allows us to give an explicit parametric representation of the phenomenon  rather than adopt an implicit formulation in more composite components solution ( as for example expressed by eq. 14). In this hypothesis each end-member can be treated with logistic-type dynamics. Excess energy is equal to the sum of partial energies of components present in the mixture as follows:
For a binary solution:

 (14)

Where  is eq.(10) and  parameter is unique for each iteration number; this formulation allows us to adopt logistic maps as interpolation function. Generalizing expression. (14) to  components, we have:

 (15)
or briefly
 (16)
In this formulation iteration value which describes the overall dynamics can be named interaction evolution rate. It is remarkable that even a few iterations allow us to effectively describe the mixture, so in the present work the iteration has been expanded to the third order. The above expression, adopting this assumption, can be rewritten as:

 (17)

as will be explained in depth later.

Applications
From equation (9) adopting (17), Verhulst's approach can be summed up, operatively, as follows respectively for a binary (18), ternary (19) and quaternary (20) system:

 (18)

 (19)
 (20)

where, as before described, (5), (6), (7) different iteration degrees are singularly

 (21)

To evaluate the significance of the logistic model, for comparison we have utilized experimental data utilized by Wilson (1964) and Kholer and Findenegg (1965) to validate their own models. 
So for binary set illustrated in table 1 (Wilson, 1964):

Methanol-Benzene(MB)

While for ternary set exemplified in table2a (Wilson, 1964) and 2b (Kholer and Findenegg, 1965):

Methanol-CarbonTetrachloride-Benzene(MCB) Acetone-Methanol-Methilacetate (AMM)
Acetone-Methanol-Chloroform (AMC) Acetone-Methanol-Water (AMW)
nButane-Butene-Furfurole (NBF) Methane-Tetrachlore-Benzol (MTB)
Aniline-Cycloexane-Benzol (ACB) Ethanol-Dichloreethane-Benzol (EDB)
Heptane-Cyclohexane-Benzol (HCB) Tetrachlore-Cyclohexane-Benzol (TCB)

Futhermore, there are few references to studied quaternary excess solution systems and none for quintenary systems are actually available. For quaternary dataset we have considered the pyroxene MCCF (Mg2Si2O6-CaMgSi2O6-CaFeSi2O6-FeSi2O6) system described by Ottonello,1992 (table3).
As appears manifest in tables 1 and 2, below illustrated, the efficacy of the logistic map approach is not particularly convenient for binary and ternary systems because the coefficient number is greater compared to other models and the mean error is substantially the same. The situation changes radically from quaternary compositions ( e.g.. Wohl model needs 17 interaction parameters (12 binary, 4 ternary and 1 quaternary) while 12 are required by the logistic map model). Differences increase further with more complicated compositions. Table 4 summarizes adopted parameters calculated in tables 1 and 2.

Table 1: Excess enthalpy of mixing for vapour-liquid equilibrium data (Wilson, 1964) of the system Methanol-Benzene at 35°C, values calculated  with present model and discrepancies between  experimental and calculated data.

XMethanol                         Gexcess,cal/mole                    calculated                                          delta                 delta Wilson
_____________________________________________________ 
0.0242               47.150               35.625                   11.524         7.20
0.0254               40.670               37.288                   3.381         -1.21
0.1302              173.40               157.681                   15.718        5.73
0.3107              281.08               281.080                   1.2E-5        1.59
0.4987              306.06               311.486                   5.426         1.68
0.5191              304.24               309.096                   4.856         1.17
0.6305              278.46               278.142                   0.317         0.85
0.7965              192.65               184.120                   8.529         0.76
0.9197               89.15                83.610                   5.539         0.70
                                                      mean  error  6.143         2.32 


Table 2a: Comparison between experimental data from Wilson (1964) and present  model (1). Table also details differences between experimental data of this model (2) and Wilson's results (3).
______________________________________________________________________
Methanol-Carbon Tetrachloride-Benzene
    X1        X2            X3     deltaGsp   deltaGcal (1)    delta(2)       delta(3)
_________________________________________________________________________
0.2075 0.19   0.6025 248.3   248.299     0.001     -0.5
0.211  0.3879 0.4011 257.6   273.450    15.850     -1.5
0.1987 0.5876 0.2137 253.6   253.600     9.37E-5    1.4
0.3781 0.3122 0.3097 320.5   320.500     5.52E-5   -0.9
0.5543 0.2078 0.2379 314.3   307.528     6.771      0.5
0.7599 0.1076 0.1325 225.2   225.200     0.001      1.6
                             mean error  3.770      1.06

Table 2b: Comparison between experimental data and Kohler's model (1960) from Kohler and Fingenegg (1965) and proposed model (2) calculations. the table also details the differences between experimental data and Kohler's model (3) and experimental data and Verlhust's  model (4)

_________________________________________________________________________________
Acetone-Methanol-Methyacetate
  X1       X2         X3      deltaGsp  deltaGcal (1)   deltaGcal(2)    delta(3)      delta(4)
_________________________________________________________________________________
0.066 0.872 0.062 57.800  61.500      76.110    -3.700   18.310
0.065 0.875 0.060 57.600  60.100      74.737    -2.500   17.137
0.577 0.342 0.081 90.000  95.500      90.000    -5.500    2.7E-5
0.883 0.067 0.050 26.500  24.100      26.500     2.400    0.001
0.421 0.457 0.122 118.200 108.800    115.878     9.400    2.321
0.434 0.442 0.124 112.900 108.800    113.547     4.100    0.557
0.539 0.273 0.188  94.000  96.100     83.281    -2.100   10.718
0.184 0.610 0.206 128.000 120.600    133.119     7.400    5.119
0.185 0.605 0.210 134.000 121.900    133.338    12.100    0.661
0.256 0.428 0.316 142.000 127.200    124.823    14.800   17.176
0.102 0.433 0.465 134.300 146.000    139.464   -11.700    5.164
0.110 0.430 0.460 137.400 144.000    138.431    -6.600    1.031
0.159 0.411 0.430 146.900 138.000    132.233     8.900   14.666
0.160 0.410 0.430 147.800 138.000    132.056     9.800   15.743
0.454 0.097 0.449  56.000  60.700     86.242    -4.700   30.242
0.472 0.063 0.465  49.900 47.300      85.659     2.600   35.759
0.232 0.215 0.553 104.800 103.900    104.799     0.900   0.001
0.101 0.235 0.664 110.700 113.000    106.980    -2.300   3.719
                                     mean error  6.194   9.907

     
Acetone-Methanol-Chloroform
  X1        X2         X3     deltaGsp   deltaGcal (1)    deltaGcal(2)     delta(3)     delta(4)
_________________________________________________________________________________
0.045 0.902 0.053  31.300      50.100    95.432   -18.800   64.132
0.483 0.483 0.035   107.600    87.000    82.729    20.600   24.870
0.453 0.500 0.047    81.600    83.600    92.554    -2.000   10.954
0.493 0.466 0.041   100.000    84.500    75.827    15.500   24.172
0.896 0.052 0.052     5.500    -3.500   -39.125     9.000   44.625
0.195 0.622 0.183    79.900    99.600   165.183   -19.700   85.282
0.200 0.600 0.200    82.500    84.500   162.564    -2.000   80.064
0.433 0.432 0.135    75.100    78.500    75.099    -3.400    0.001
0.600 0.200 0.200     3.300    20.200   -31.143   -16.900   34.443
0.574 0.207 0.219     8.300    21.900   -25.896   -13.600   34.196
0.024 0.500 0.476   173.200   186.300   171.544   -13.100    1.655
0.026 0.508 0.466   175.300   183.100   173.376    -7.800    1.923
0.026 0.487 0.487   168.000   183.100   167.997   -15.100    0.003
0.154 0.433 0.413   107.600   128.000   135.420   -20.400   27.820
0.333 0.333 0.333    52.600    71.000    63.559   -18.400   10.959
0.427 0.146 0.427   -39.600    -6.800   -14.336   -32.800   25.263
0.498 0.029 0.473  -113.900   -96.500   -43.459   -17.400   70.440
0.492 0.027 0.481 -121.200    -98.600   -42.403   -22.600   78.796
0.487 0.026 0.487 -148.400   -100.000   -41.502   -48.400  106.897
0.200 0.200 0.600   53.200     65.800    47.237   -12.600    5.962
0.190 0.196 0.614   60.900     66.900    47.617    -6.000   13.282
0.048 0.046 0.906   22.300     17.900    15.821     4.400    6.478
                              mean error           15.477   34.192


Acetone-Methanol-water
   X1       X2         X3     deltaGsp   deltaGcal (1)   deltaGcal(2)    delta(3)  delta(4)
_________________________________________________________________________________
0.607 0.330 0.063 109.000  108.400    162.431    0.600   53.431
0.257 0.640 0.103 116.500  105.500    116.487   11.000    0.013
0.672 0.082 0.246 205.600  219.300    205.600  -13.700    2.26E-6
0.275 0.344 0.381 222.200  223.700    213.883   -1.500    8.316
0.075 0.470 0.455 162.300  158.400    203.582    3.900   41.282
0.361 0.127 0.512 267.100  294.000    266.793  -26.900    0.306
0.158 0.088 0.754 223.500  208.900    223.585   14.600    0.085
0.066 0.119 0.815 165.700  131.100    187.806   34.600   22.106
    mean error  13.350 15.692


n-Butane-Butene-Furfurole
  X1        X2        X3      deltaGsp  deltaGcal (1)   deltaGcal(2)      delta(3)      delta(4)
_________________________________________________________________________________
0.027 0.205 0.768 186.600  185.400    186.600     1.200    8.6E-7
0.038 0.187 0.776 185.500  183.700    186.226     1.800    0.726
0.045 0.216 0.739 198.300  196.400    194.110     1.900    4.189
0.099 0.133 0.768 199.500  194.300    198.754     5.200    0.745
0.166 0.036 0.798 200.500  199.000    202.232     1.500    1.732
0.069 0.094 0.837 162.200  159.000    165.540     3.200    3.340
0.147 0.030 0.823 186.200  185.100    186.193     1.100    0.001
0.021 0.112 0.868 130.600  130.100    140.317     0.500    9.717
0.113 0.024 0.863 158.100  156.200    155.090     1.900    3.009
    mean error  2.033 2

  
Methanol-Tetrachlore-Benzol
    X1      X2         X3      deltaGsp    deltaGcal (1)    deltaGcal(2)    delta(3)     delta(4)
_________________________________________________________________________________
0.843 0.081 0.075  168.800    172.800    179.133   -4.000  10.333
0.752 0.112 0.137  238.000    240.100    238.001   -2.100   0.001
0.195 0.592 0.213  253.000    241.600    253.000   11.400   0.001
0.556 0.213 0.231  324.600    317.100    289.441    7.500  35.158
0.359 0.323 0.318  324.600    307.300    280.496   17.300  44.103
0.198 0.396 0.406  252.300    234.500    263.538   17.800  11.238
0.198 0.396 0.406  251.100    234.500    263.538   16.600  12.438
0.188 0.196 0.616  235.300    222.800    232.298   12.500   0.001
                                                                      mean error               11.150  14.159

Aniline-Cyclohexane-Benzol
   X1       X2         X3      deltaGsp   deltaGcal (1)   deltaGcal(2)    delta(3)   delta(4)
_________________________________________________________________________________
0.148 0.442 0.410  155.500  153.600    155.500    1.900   1.89E-5
0.204 0.238 0.558  135.300  141.800    134.966   -6.500   0.333
0.273 0.245 0.482  183.400  168.700    160.485   14.700  22.914
0.300 0.375 0.325  198.300  175.400    178.298   22.900  20.002
0.411 0.224 0.365  229.500  191.700    197.366   37.800  32.133
0.509 0.136 0.355  216.000  170.200    215.165   45.800   0.834
0.557 0.206 0.237  233.900  201.800    212.352   32.100  21.547
0.656 0.139 0.205  187.400  170.900    208.082   16.500  20.682
                                     mean error  22.275  14.805

Ethanol-Dichlorathane-Benzol
  X1        X2         X3     deltaGsp  deltaGcal (1)   deltaGcal(2)   delta(3)   delta(4)
_________________________________________________________________________________
0.603 0.339 0.058 232.800  221.500    222.932    11.300  9.867
0.241 0.658 0.101 208.100  198.000    208.099    10.100  0.001
0.139 0.751 0.110 145.200  133.500    148.807    11.700  3.607
0.736 0.134 0.130 182.300  173.600    182.321     8.700  0.021
0.400 0.433 0.167 254.300  235.300    253.498    19.000  0.801
0.143 0.626 0.231 130.900  135.000    166.752    -4.100 35.852
0.478 0.261 0.261 263.800  241.100    262.666    22.700  1.133
0.600 0.059 0.341 248.700  237.100    261.544    11.600 12.844
0.430 0.169 0.401 263.500  249.900    282.572    13.600 19.072
0.301 0.347 0.352 234.700  222.100    229.506    12.600  5.193
0.209 0.401 0.390 195.300  184.300    189.018    11.000  6.281
0.282 0.106 0.612 239.900  231.400    239.910     8.500  0.010
0.121 0.268 0.611 134.900  130.200    149.751     4.700 14.851
0.123 0.123 0.754 138.300  136.000    136.520     2.300  1.779
                         mean error              10.850  7.951

       
Heptane-Cyclohexane-Benzol
   X1       X2         X3     deltaGsp  deltaGcal (1)   deltaGcal(2)    delta(3)    delta(4)
_________________________________________________________________________________
0.044 0.139 0.817 136.200 134.100      151..969   2.100 15.769
0.060 0.188 0.752 166.600 168.500      180.154   -1.900 13.554
0.088 0.120 0.792 160.800 156.800      160.800    4.000  4.01E-6
0.099 0.058 0.843 130.300 132.900      136.831   -2.600  6.531
0.120 0.070 0.810 155.100 153.700      153.465    1.400  1.634
0.166 0.195 0.639 204.600 221.300      206.878  -16.700  2.278
0.155 0.250 0.595 216.100 229.200      215.246  -13.100  0.853
0.158 0.380 0.462 226.800 235.400      223.598   -8.600  3.201
0.160 0.505 0.335 195.500 205.500      206.779  -10.000 11.279
0.119 0.684 0.197 147.200 131.900      147.412   15.300  0.212
0.304 0.195 0.501 226.100 240.000      221.437  -13.900  4.662
0.280 0.259 0.461 220.600 240.700      220.471  -20.100  0.128
0.243 0.342 0.415 228.700 236.800      218.537   -8.100 10.162
0.286 0.387 0.327 210.300 217.700      208.742   -7.400  1.557
0.311 0.418 0.271 176.100 197.900      200.742  -21.800 24.754
0.422 0.280 0.298 195.700 206.700      199.639  -11.000  3.939
0.447 0.237 0.316 197.900 209.100      199.791  -11.200  1.891
0.577 0.191 0.232 170.900 170.200      168.175    0.700  2.724
0.625 0.169 0.206 154.200 155.100      154.307   -0.900  0.106
                                      mean error  8.989  5.539

Tetrachlore-Cyclohexane-Benzol
 X1           X2         X3        deltaGsp    deltaGcal (1)   deltaGcal(2)   delta (3)   delta(4)
_________________________________________________________________________________
0.213 0.574 0.213    109.700  110.200     111.684   -0.500   1.984
0.233 0.534 0.233    115.300  113.500     115.300    1.800   4.07E-5
0.280 0.440 0.280    120.500  115.000     119.272    5.500   1.227
0.306 0.388 0.306    118.200  113.600     118.688    4.600   0.488
0.325 0.350 0.325    117.200  111.400     117.168    5.800   0.031
                                         mean error  3.640   0.746

Table 3: Energy parameters of C2/c pyroxene quadrilateral calculated on 55 distinct compositions by Ottonello (1986) evaluated with Verlhust's approach and discrepancies between data.
_________________________________________________________________________________
  X1            X2           X3           X4      deltaGmodel  deltaGcalculated   delta
 
_________________________________________________________________________________
0.0000 0.5000 0.5000 0.0000     0.001     7.998        7.997
0.0500 0.5000 0.4500 0.0000     1.669     6.804        5.135
0.1000 0.5000 0.4000 0.0000     2.608     5.782        3.174
0.1500 0.5000 0.3500 0.0000     3.622     4.948        1.326
0.2000 0.5000 0.3000 0.0000     4.323     4.315        0.007
0.2500 0.5000 0.2500 0.0000     4.266     3.898        0.367
0.3000 0.5000 0.2000 0.0000     3.713     3.712        0.001
0.3500 0.5000 0.1500 0.0000     3.572     3.772        0.200
0.4000 0.5000 0.1000 0.0000     2.320     4.091        1.771
0.4500 0.5000 0.0500 0.0000     1.196     4.685        3.489
0.5000 0.5000 0.0000 0.0000     0.001     5.568        5.567
0.0000 0.4000 0.5000 0.1000     4.059     8.490        4.431
0.0830 0.4000 0.4170 0.1000     6.614     6.601        0.012
0.1670 0.4000 0.3330 0.1000     7.114     5.201        1.912
0.2500 0.4000 0.2500 0.1000     8.013     4.390        3.622
0.3330 0.4000 0.1670 0.1000     7.240     4.215        3.024
0.4170 0.4000 0.0830 0.1000     4.807     4.753        0.053
0.5000 0.4000 0.0000 0.1000     2.765     6.060        3.295
0.0000 0.3000 0.5000 0.2000     6.556     8.182        1.626
0.0715 0.3000 0.4285 0.2000     8.291     6.527        1.763
0.1425 0.3000 0.3575 0.2000     9.653     5.244        4.408
0.2140 0.3000 0.2860 0.2000    10.279     4.360        5.918
0.2860 0.3000 0.2140 0.2000     9.242     3.924        5.317
0.3575 0.3000 0.1425 0.2000     7.729     3.986        3.742
0.4285 0.3000 0.0715 0.2000     6.325     4.579        1.745
0.5000 0.3000 0.0000 0.2000     4.174     5.752        1.578
0.0000 0.2000 0.5000 0.3000     6.922     7.254        0.332
0.0625 0.2000 0.4375 0.3000     8.275     5.788        2.486
0.1250 0.2000 0.3750 0.3000     8.963     4.597        4.365
0.1875 0.2000 0.3125 0.3000     9.437     3.709        5.727
0.2500 0.2000 0.2500 0.3000     9.009     3.154        5.854
0.3125 0.2000 0.1875 0.3000     9.050     3.766        6.090
0.3750 0.2000 0.1250 0.3000     7.617     4.824        4.462
0.4375 0.2000 0.0625 0.3000     6.530     3.766        2.763
0.5000 0.2000 0.0000 0.3000     4.278     4.824        0.546
0.0000 0.1000 0.5000 0.4000     4.920     5.886        0.966
0.0555 0.1000 0.4445 0.4000     5.500     4.571        0.928
0.1110 0.1000 0.3890 0.4000     5.968     3.457        2.497
0.1670 0.1000 0.3330 0.4000     6.102     2.597        3.504
0.2225 0.1000 0.2775 0.4000     5.686     1.987        3.698
0.2775 0.1000 0.2225 0.4000     6.163     1.654        4.508
0.3330 0.1000 0.1670 0.4000     5.880     1.611        4.268
0.3890 0.1000 0.1110 0.4000     5.267     1.885        3.381
0.4445 0.1000 0.0555 0.4000     4.438     2.493        1.944
0.5000 0.1000 0.0000 0.4000     3.203     3.456        0.253
0.0000 0.0000 0.5000 0.5000     0.001     4.257        4.256
0.0500 0.0000 0.4500 0.5000    -0.007     3.063        3.070
0.1000 0.0000 0.4000 0.5000     0.334     2.041        1.707
0.2000 0.0000 0.3000 0.5000     0.135     0.573        0.438
0.2500 0.0000 0.2500 0.5000     0.077     0.156        0.079
0.3000 0.0000 0.2000 0.5000    -0.029    -0.029        5.4-E-6
0.3500 0.0000 0.1500 0.5000    -0.188     0.030        0.218
0.4000 0.0000 0.1000 0.5000    -0.069     0.349        0.418
0.4500 0.0000 0.0500 0.5000    -0.377     0.943        1.320
0.5000 0.0000 0.0000 0.5000     0.001     1.827        1.826
_________________________________________________________________________________
                                       mean error      2.607

 

 

Table 4: Parameters of  Verlhust's approach for binary, ternary and quaternary systems.

                 MB        MCB      AMM       AMC      AMW      BBF     MTB       ACB      EDB      HCB     TCB      MCCF
    1065.545  2217.894 231.752 -930.942  1027.970  607.004 1486.731 1182.059 2374.026  801.718 468.956  82.606
   9.076       22.279  10.508    4.594    13.761  -19.456    8.090    7.789   25.070   14.996  13.801  -3.04E-6
   3.459        4.935   2.962    3.122     5.863    0.988    0.318    1.251    1.051   6.225    1.026  -0.040
   1424.870  1123.512 758.979 1209.642   303.189 -396.430 1176.158  497.238   82.387  791.600 632.982 -38.057
   8.336       13.022   0.010   -0.039    -5.253   20.542   -2.619  -11.467  -16.035    9.388  13.251   1.78E-5
   4.145        1.716  -2.265   -2.105     5.505    1.490    1.059    0.989    0.970   80.25    1.079   0.090
   -          957.835 487.593  168.983  1524.212 1372.701 1068.244  731.026  791.064 1208.905 468.956 102.047
   -            0.000   2.998    4.139    17.194   -7.186    2.072   16.831   11.350   13.098  13.801  -4.33E-7
   -            0.000   0.007    3.040    -4.514   -1.113    1.137    1.184    1.102   -1.942   1.026    0
   -             -        -       -         -         -        -       -         -       -       -     -67.989
   -             -        -       -         -         -        -       -         -       -       -   -1.46E-6
   -             -        -       -         -         -        -       -         -       -       -    -0.095

 


Discussion and conclusions
There are some notable aspects to Verhulst's approach to excess energy of a mixture:
1) Physical: a logistic map describes the evolution of a population (Odum, 1983) . In the broad sense the population can be assumed as the amount of an end-member in a mixture.
2) Chemical: a logistic equation has already been used in chemistry to describe chemical evolution of a system (Latham, 1964; Northrop et al.,1948; Steven, 1965)
3) Mathematical: a logistic map appears to imitate the behavior of excess free energy in mixture processes as the tendency for like atoms to cluster.
The logistic map, used in population dynamics, allows us to indicate the growth rate of a population with limited resources. A mixture, in the same manner, is conditioned by environment. It is important to recognize that a twice iterated logistic map is equal to a once-iterated fourth degree polynomial, mimicking the atom's tendency to cluster.
Mathematically, a logistic map as the recursive function of  non-ideal contribution to free energy (eq. 11), is intrinsically consistent both with theory, and with the natural recursivity of crystallographic structure because the purpose of interaction between end-member, analogously to a biotic system, is optimization of the energy asset efficiency. Experimental data validates the acceptability of the model.

References
Cheng, W. and Ganguly, J. (1994): Some aspects of multicomponent excess free energy models with subregular binaries. Geochim. Cosmochim. Acta, 58:3763-3767.

Guggenheim E.A. (1937) Theoretical basis of Raoult'law. Trans. Faraday Soc., 33, 151-159

Guggenheim E.A. (1967) Thermodynamics. Amsterdam, North. Holland Publ. Co.

Hildebrand J.H. (1929) Solubility, XII, Regular solutions. J.Am. Chem.Soc.,51, 66-80

Hillert M. (1980) Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. Calphad 4, 1-12

Kohler F. & Findenegg G.H. (1965) Zur Berechnung der Thermodynamischen Daten eines ternaren System aus den zugehorigen binaren systemen. Monatschr Chem., 96, 1229-1251

Kohler F. (1960) Zur Berechnung der Thermodynamischen Daten eines ternaren System aus den zugehorigen binaren systemen. Monatschr Chem., 91, 738-740

Latham J. L. (1964) Elementary reaction kinetics. London Butterworths.

Lotka A. J. (1956) Elements of physical biology. Baltimore, William & Wilkins 460 pp. (reprinted as Elements of mathematical biology New York, Dover 1956.)

May R.M. (1976) Simple mathematical models with very complicated dynamics, Nature 261, 459-467.

Northrop J.H., Kenitz M. and Heniot R.M. (1948) Crystalline enzymes 2nd ed. New York Cambridge University Press

Odum E. P. (1983) Basic Ecology CBS College Publishing 544 pp.

Ottonello G. (1992) Interactions and mixing properties in the (C2/c) clinopyroxene quadrilateral  Contrib. Mineral. Petrol., 111, 53-60

Steven B. (1965) Chemical kinetics for general students of chemistry. London Chapman & Hall

Tsallis (1995) Non-extensive themostatistics brief review and comments. Physica A 221, 277-290

Tsallis (1999) Nonextensive statistics: theoretical, experimental and computational evidences and connections. Brasilian Journal of Physics 29, 1-35

Verhulst P.F. "Deuxième mémoire sur la loi d'accroissement de la population." Mém. de l'Academie Royale des Sci., des Lettres et des Beaux-Arts de Belgique 20, 1-32, 1847.

Verhulst P.F. "Recherches mathématiques sur la loi d'accroissement de la population." Nouv. mém. de l'Academie Royale des Sci. et Belles-Lettres de Bruxelles 18, 1-41, 1845.

Wilson G.M. (1964) Vapour-liquid equilibrium XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc., 86, 127130

Wohl  K. (1946) Thermodynamic evaluation of binary and ternary liquid systems. Trans Am. Inst. Chem Eng., 42, 215-249

Make a Free Website with Yola.